Data management on the fusion computational pipeline

نویسندگان

  • S. Klasky
  • M. Beck
  • V. Bhat
  • E. Feibush
  • B. Ludäscher
  • M. Parashar
  • A. Shoshani
  • D. Silver
  • M. Vouk
چکیده

Fusion energy science, like other science areas in DOE, is becoming increasingly data intensive and network distributed. We discuss data management techniques that are essential for scientists making discoveries from their simulations and experiments, with special focus on the techniques and support that Fusion Simulation Project (FSP) scientists may need. However, the discussion applies to a broader audience since most of the fusion SciDAC’s, and FSP proposals include a strong data management component. Simulations on ultra scale computing platforms imply an ability to efficiently integrate and network heterogeneous components (computational, storage, networks, codes, etc.), and to move large amounts of data over large distances. We discuss the workflow categories needed to support such research as well as the automation and other aspects that can allow an FSP scientist to focus on the science and spend less time tending information technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارزیابی ریسک شبکه توزیع گاز شهری با استفاده از تحلیل سلسله مراتبی در شهر سنندج

Background and Aims: Natural gas pipeline network is an important part of a city’s infrastructure for energy transmission. As the gas pipeline network becoming vaster and more complex, accident caused by the leak of gas pipeline network occur. Accidents consequences caused by gas pipeline rupture, can directly threatening the safety of persons and properties in the city. Thus, it is neces...

متن کامل

Neural Network and Data Fusion in the Application Research of Natural Gas Pipeline Leakage Detection

For natural gas pipeline, it has a leak or not is critical. The most commonly problems in the pipeline leak detection methods are the difficulties to identify, inaccuracy to locate, thus, the natural gas pipeline detection is difficult to be applied, therefore, the use of neural network multi-sensor data fusion of the natural gas pipeline leak detection is particularly important. In this paper,...

متن کامل

An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data

Large amounts of multimodal neuroimaging data are acquired every year worldwide. In order to extract high-dimensional information for computational neuroscience applications standardized data fusion and efficient reduction into integrative data structures are required. Such self-consistent multimodal data sets can be used for computational brain modeling to constrain models with individual meas...

متن کامل

Combination of Feature Selection and Learning Methods for IoT Data Fusion

In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...

متن کامل

Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline

Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges--management of large and incongruous data, integration and interoperabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005